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SHo Carlos-SP. Brazil 
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Abstract. We derive the operator content of the spin-SXXZ quantum chain with generalised 
toroidal boundary conditions compatible with the U(1) symmetry of the model. These 
results are derived by solving numerically the associated Bethe ansatz equations for finite 
chains and exploring the consequences of the conformal invariance o f  the infinite system. 
We also show that, as in the spin-4 case, the conformal anomaly and dimensions of general 
extended SU(2) algebras can be obtained from these spin-S chains by choosing properly 
the coupling constant and the boundary condition. 

1. Introduction 

In two dimensions the conformal invariance at the critical point of the statistical 
systems powerfully constrains the possible universality classes of critical behaviour 
[ 1,2]. These universality classes are labelled by the dimensionless number c, which 
is the central charge or conformal anomaly of the associated Virasoro algebra. In the 
case where c < 1 the requirement of reflection positivity (unitarity) of the transfer 
matrix [2] restricts c to the countable set 

m = 3 , 4 , 5  , . . . .  (1.1) 

In this minimal series, which includes the Ising ( m  = 3) ,  the three-state Potts model 
( m  = 5 ) ,  the algebra is finite and the scaling dimensions (Ap,q,  & 4 )  are given by the 
Kac formula 

6 
m ( m + l )  

c = l -  

[ p ( m  + 1) - qm]’ -  1 
4 m ( m + l )  

1 a p e  m-1, 1 qa m. A P . 4  = 

When c 2 1 the algebra is not finite and unitarity does not restrict the values of c. 
These values are again constrained when the primary fields obey an extended algebra, 
larger than the Virasoro algebra. These are the cases of models exhibiting supersym- 
metry [3] where 

Z( N )  is the Zamolodchikov-Fateev parafermionic algebra [4] where 

2 ( N - 1 )  
C =  N = 2,3,4, .  . . 

N + 2  (1.4) 
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and the Kac-Moody algebra, where c is a function of the topological charge k and 
the associated semisimple group G, in the case where G is the SU(2) group [ 5 ] ,  is 

3k 
l + k '  

c=- 

More generally, it was shown [6] using a Feigin-Fuchs construction [7] that a 
general set of theories can be derived from those described by the SU(2) Kac-Moody 
algebra with topological charge k. The conformal anomaly of these theories is given by 

m = 3 , 4 ,  . . . ;  k = l , 2 ,  . . .  c = - ( 1 -  3k 
k t -2  m ( m + k )  (1.6) 

and the corresponding scaling dimensions ( A , , ,  A,,) are given by a generalisation of 
the Kac formula (1.2) 

[ p ( m  + k) - qm]*- k2 
4km(m + k) 

t(k - t )  
2k( k + 2) 

+ AP.9 = (1.7a) 

where 

m = 3 , 4 , .  , . ; 1 ~p s m - 1;  1 < qs m +  k -  1;  t = ( p - q )  mod 2k; 0 s  t d  k. (1.76) 

The cases k = 1 and k = 2 recover the minimal and supersymmetric series given by 
( 1 . 1 )  and (1.3) respectively. As m + m  we obtain the conformal anomaly of a SU(2) 
Kac-Moody algebra with topological charge k. 

In a previous paper [8] we have obtained the operator content of a special set of 
antiferromagnetic quantum Hamiltonians defined on a periodic chain. These Hamil- 
tonians describe the dynamics of particles with arbitrary spin ( S  = 1 ,  4, 2 , .  . .) and are 
generalisations of the standard S = f anisotropic Heisenberg model or X X Z  quantum 
chain. These spin chains are exactly integrable through the Bethe ansatz. Analysing 
numerically their eigenspectrum, with periodic boundaries, we verified [8] that they 
are described by a c = 3S/(  1 + S) conformal field theory, described in terms of com- 
posite field operators formed by the product of Gaussian fields (c  = 1 )  and Z ( 2 S )  
Zamolodchikov-Fateev operators (c  = ( 2 s  - l ) /S+ 1) .  These spin chains also corre- 
spond to a generalised Coulomb gas [9]. 

In the case of the S = X X Z  chain (c  = f) it was shown [ 10,113 that the operator 
content of other models with c < 1 can be obtained by changing continuously the 
boundary conditions. This fact motivated us to study the operator content of the 
general spin-S X X Z  chain ( c  = 3S/ 1 + S) with generalised toroidal boundary condi- 
tions, in order to see if we can recover the conformal anomaly and dimensions of the 
c < 3S/ (  1 + S) theories. 

The operator content for these spin chains will be calculated by exploiting the 
relationship [12] between the eigenspectrum of the finite chain (size L ) ,  at the critical 
point, and the conformal anomaly and scaling dimensions of the operators governing 
the critical behaviour. The conformal anomaly c can be derived from the finite-size 
corrections of the ground state E,( L )  of the finite chain [ 131. For periodic boundaries 

where e ,  is the bulk limit of the ground-state energy and 5 is the sound velocity. On 
the other hand the scaling dimensions of the primary operators can be evaluated from 
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the finite-size corrections of the excited states. For each primary operator t,hA,j, with 
dimensions X = A + A  and spin s = A -  & there exists a tower of states in the finite L 
chain. The energy and momentum of these states are given by [12] 

E M , G  = & ( L )  + 2 ~ 5 ( X  + M + R ) / L + o ( L - ’ )  ( 1 . 9 ~ )  

2 T  
L P M ,  $j = - ( s + M - R ) M , M = O ,  1 ,2  , . . . .  (1.9b) 

The layout of this paper is as follows. In section 2 we present the models and their 
associated Bethe ansatz equations, for the case of general toroidal boundary conditions. 
These equations are analysed numerically in sections 3 and 4. In section 3 we present 
some distributions of zeros of these equations and in section 4 the operator content 
of the spin-S XXZ model with general toroidal boundaries is derived. Finally in 
section 5 we show that the dimensions (1.7) of the extended algebras (1.6) can be 
obtained from the operator content derived in section 4. 

2. The Bethe ansatz and the spin-S XXZ chain with general toroidal boundary 
conditions 

The spin-S = XXZ chain with anisotropy constant y and Hamiltonian 

describes the dynamic of spin-S = f Pauli matrices (a?, a;, af) located at the sites 
( i  = 1,2, .  . . L) of an L-site chain. The exact solution of the eigenenergies of (2.1) in 
a periodic chain, is one of most known examples of the success of the Bethe ansatz 
technique. 

The generalisation of (2.1), for a spin-S = 1 model, preserving integrability is given 
by the Hamiltonian [15] 

l L  
4 ! = I  

H ; i Z ( y )  =- {a,-(a,)’ -2(cos y - l ) ( a ; a ; + a f u : )  

-2 sin’ y ( a f  - ( ~ f ) ~ + 2 ( ~ ; ) ’ - 2 ) }  ( 2 . 2 ~ )  

where 

a, = SISI+, = a; + a:; a: = sfsf,, (2.2b) 

and S‘, SL and S’ are the (3x3)  SU(2)-matrices of spin-1. The generalisation to 
arbitrary spin-S [ 161 is a polynomial of degree 2 s  in the variables a:, af and Sf. The 
isotropic limit ( y = 0) of these models corresponds to the spin-S Takhtajan-Babudjian 
Hamiltonian [ 171. These antiferromagnetic spin-S chains are massless for 0 s  y G T 
and in previous publications [8] we have calculated their operator content for 
O S  y G 7r/2S and periodic boundary conditions. In this paper we will calculate the 
operator content for these quantum chains with the boundary condition ( O S  4 < T): 

= S ; + , + i S ~ + ,  =e*”(S;*iS;) si+, = Sf (2.3) 
which corresponds to a rotation by an angle 4 of the last spin around the z axis. 
These spin-S quantum chains, in the periodic case, are related to (2S+  1) colour-vertex 
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models defined in a torus with a perimeter L in one direction and an infinite perimeter 
in the other direction (time). The boundary conditions (2.3) correspond to the introduc- 
tion of a seam with different Boltzmann weights along the time direction. In the 
spin-S = case (c  = 1) the effect of these boundaries [ 10,111 in the Hamiltonian, or 
the seam line in the vertex models [18], is the reduction of the finite-size corrections, 
producing the same corrections as a c < 1 theory in a periodic chain. 

The spin-S quantum chain has in general a U(1) symmetry corresponding to the 
commutation of the total spin operator 

The boundary condition (2.3) is the most general boundary condition compatible with 
this U( 1 )  symmetry and consequently we can, as in the periodic case (4  = 0 ) ,  separate 
the Hilbert space in disjoint sectors labelled by the eigenvalues of s', namely n =0,  
* l ,  *2, .  . .  , *LS for L even and for L odd n =*;, *$,. . .  , *LS ( n = 0 ,  * l ,  
*2,. . . * L S )  if S is half-integer (integer). 

The Bethe ansatz equations, for the periodic case, were derived by Sogo [ 161. We 
present now the corresponding equations for the case of the boundary conditions (2.3). 
The eigenenergies, for a given sector n, are given in terms of the ( S L - n )  complex 
roots ( A , ,  A 2 , .  . . , A S L - n )  of the nonlinear set of Bethe ansatz equations ( BAE) 

S L - n  sinh y ( A j  - hk - i)  
j = 1 , 2  ,..., S L - n .  (2.4) 

sinh y ( A j  -is) 
sinh ? ( A j  + is) k = l  sinh y(Aj-Ak+i) 

The eigenenergies are given by 

The above equations recover the periodic case [ 161, when 4 = 0, for general S as 
well the spin-S = 4 case with arbitrary angle 9 [lo]. 

3. Numerical solutions of the Bethe ansatz equations 

In [8] and [lo] we can find an extensive list of previous works based on the solution 
of the BAE for finite systems. In [8] we have analysed extensively equation (2.4) in 
the periodic case (4 = 0) and in this section we will report our results for the general 
angle 4 in the region where 0 6 y S 7r/2S. The equations for 4 # 0 are in general more 
difficult to solve numerically because in this case, contrary to the periodic case [8], 
we should always search for non-symmetric distribution of zeros with respect to the 
imaginary axes. This is due to the fact that in the case where 4 # 0 even the zero- 
momentum states have non-symmetrical distribution of zeros. Because of this most 
of our numerical analysis will be done for the spin-S = 1 system. 

We solve the BAE (2.4) by using the Newton-type method for systems of size 
L = 2-40. We can easily extend these lattice chains up to L - 100, which is not necessary 
for our purposes. We solve initially the simplest case where 4 = 0 and we use this 
solution as an initial guess for the 4 # 0 system. 

In order to proceed let us now discuss briefly how to implement a vectorial basis, 
with momentum quantum numbers, for the general toroidal boundary conditions (2.3). 
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For simplicity, assume we are using the basis in which S' is diagonal, i.e. 

sflsl 9 '2, * * * S L ) = s J / s l  > * 9 ' L )  ( 3 . 1 )  

where sJ = -S ,  - S +  1, .  . . , S. In this case the Hilbert space is already separated in 
block disjoint sectors labelled by 

L 

n =  C S f .  
r = l  

The momentum states in a given sector n, are given by the states with positive norm 

where 

C , = e x p [ i t ? ( k - g ) ]  exp(i4 : $ s L - ] )  k, t = 0 , 1 , 2 , .  . ., L - 1 .  (3 .26 )  

We therefore see that for the general toroidal boundary conditions (2 .3) ,  the 
momentum numbers will depend on the boundary angle 4 and the particular sector 
n. In units of 2 r / L  they are given by 

k = 0 ,  1,2,. . . , L - 1 .  (3 .3 )  
p = k - -  4 n  

2T 

3.1. Lowest-energy state in sector n 

Our numerical results indicate that the ground state occurs in the sector n = 0, being 
a zero momentum state (k  = 0 in 3.3).  Although the state has no momentum the 
distribution of zeros is not symmetrical with respect to the imaginary axis. The roots 
{ A j ,  j = 1,. . . , LS} ,  independently of the values of y (OS y r / 2 S ) ,  cluster in a sea of 
L / 2  string-like complexes of size 2S, where the imaginary parts are approximately 
equally spaced. These results are in accordance with the string hypothesis, which 
asserts that as L+co these complexes become strings of size 2 s .  In figure 1 we show 
the distribution of A in the complex plane for the spin-S = 1 and S = 5 model in a L = 8 
lattice, with coupling y = ~ / 5  and boundary angle C#I = ~ / 5 .  Like in the periodic case 
[ 8 , 1 6 ] ,  as 1 increases the distribution of zeros tends towards a sea of L / 2  strings of 
size 2 s .  

The lowest energy states in the other sectors ( n  # 0) are non-zero momentum states 
(k = 0 in 3.3).  The string assumption [ 161 when applied to the BAE (2.4) asserts that 
the roots, as L + 00, cluster into ( L / 2  - 1 - [ n / 2 S ] )  string-like structures of size 2 s  and 
one string-like structure of size ( 2 S - { n / 2 S } ) ,  where we define [ u / b ]  and { u / b }  as 
the integer-part and the rest of the ratio a / b ,  respectively. Our numerical results for 
the spin S = 1 case are in agreement with this hypothesis, and in figure ( 2 d )  and figure 
( 2 f )  we show, for the L = 4 spin-1 chain these configurations in the sectors n = 1 and 
n = 2 ,  respectively. However, as in the periodic case [ 8 ] ,  for S 25 our numerical 
investigations also show violations in the above string assumption. 
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-1.0 

Figure 1. Typical distribution of zeros of the Bethe ansatz equations for the ground state 
of the spin-SXXZ chain with coupling y = n/5 rnd  boundary angle 4 = n/5. The vertical 
(horizontal) axis represents the imaginary (real) part of the roots. ( a )  spin-S = 1, (6)  
spin-S=$.  

3.2. Excited states 

In figure 2 we show schematically for spin-1 in an L = 4 chain, the distribution of zeros 
corresponding to some excited states. For larger lattices we only have to add strings 
of size 2 s  in the configurations of figure 2. Figures 2 ( b )  and 2 ( c )  are excited states 
in the sector n = 0 while figures 2 ( e )  and 2 ( g )  are excited states in the sectors n = 1 
and n = 2, respectively. The zeros denoted by asterisks (antiparticles) have an imaginary 
part exactly given by n / 2 y  and those by circles are real numbers. Other types of 
excitations, involving strings of size greater than two, are very difficult to obtain due 
to numerical instabilities. 

4. Finite-size corrections and the operator content of the s p i n 4  XXZ chain 

We will investigate in this section the operator content of the spin-S X X Z  chain. Our 
numerical results show that for a fixed value of the lattice size L and the anisotropy 
y, the ground-state energy EL” ( y ,  L, 9 )  has a minimum for 4 = 0 (periodic). From 
this fact we may consider the eigenstates of the spin chain with toroidal boundary 
condition (2.3),  specified by the angle 9 # 0, as excitations above the true ground-state 
energy E r ’  ( y ,  L, 0).  From (1.9) the scaling dimensions of the operators related to 



The spin-S X X Z  quantum chain 1445 

lo I 'I ' 

( e l  

1 '  
n/21 , t '  

t '  
+ 

t x  

t 
Figure 2. Some typical configuration of the complex zeros of the Bethe ansatz equations 
for the spin-1 X X Z  Hamiltonian, with boundary angle 6 # 0 in an L = 4 chain. The vertical 
(horizontal) axis represents the imaginary (real) part of the roots. The zeros forming 
string-like excitations of size 2 are represented by crosses ( x ) ,  the real zeros by circles (0) 
and the zeros with imaginary part exactly given by * l r / 2 y  are represented by asterisks 
(*). Figures ( a ) ,  (6 )  and ( c )  represent states in the sector n = 0, figures ( d  ) and ( e )  states 
in the sector n = 1 and figure (f) and (g) states in the n = 2 sector. Figures ( a ) ,  ( d )  and 
(f) correspond to the lowest-energy state of sectors n = 0, 1 and 2, respectively. 

these excitations can be calculated by extrapolating the sequences 

where E'," (7 ,  L, 4) is the rth excited eigenstate in the sector n of the quantum chain 
with toroidal boundary condition specified by 4. In (4.1) the constant 5 is the sound 
velocity, which does not depend on the particular boundary condition we choose and 
consequently, from the results of the periodic case [8, 161 

(sin 2 S y )  
4Y 

l=.rr o s  y s  T/2. 
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In table 1 we show the extrapolated results A!,')( y, O O , ~ )  for some values of y and 
4 for the spin-S= 1 and spin-S=$ chains. The extrapolated results Ao(y,0o, 4)  of 
these sequences give us the scaling dimension 

xi:&,* = (4s/T)2/(4s)2x;s'  (4.3) 
where 

(4.4) 

These conjectured values are also shown in table 1 .  
Let us restrict, for the moment, with the spin-S = 1 chain where most of our numerical 

analysis was done. The extrapolated values of the finite-size sequences A!,')( y, L, 4), 
associated to the lowest-energy state in the sector n f 0, give us the scaling dimensions 

where X:' is given by (4.4). It is interesting to observe here that, from our analysis 
of section 3, the lowest state in a given sector n has momentum n 4 / 2 ~ .  Consequently 
if (4.5) is related to the dimensions of a primary operator ( M  = M = 0 in 1.9) its spin 
should be n 4 / 2 ~ ,  which means that the operator is not scalar unless n =O.  

From the results of the periodic case [8] as well from the results of the spin-; chain 
with boundary angle 4 [ 101 we are induced to interpret the dimensions (4.3) and (4.4) 
as arising from composite operators 

( 4 . 6 ~ )  

formed by the product of Ising operators ffAl,i, with dimensions ( A , , A , )  and a 
Gaussian-type operator +2?<$'7 with dimensions (AY), A?)),  describing an excitation 
with spin wavenumber n and vorticity (m + 4/ n)  where 

(4.66) A,, Ai = 0,1/2,1/ 16 

( 4 . 6 ~ )  

Table 1. Extrapolated values of the sequences A!,'' ( y ,  L, 4 )  corresponding to the lowest 
eigenenergy in the sector n of the s p i n 3  = 1 and S = 4 chain. These estimates are obtained 
by using lattice sizes up to L=40,  and the conjectured results are given by (4.3) ( n  = 0 )  
and (4.5) ( n  # 0). 

~~ 

n = O ,  s= 1 n=O, s=$ 

( Y ,  4)  (77/6,57/5) (77/4,77/6) (7714, 77/71 (n/4, 77/6) ( 7 7 / 5 ,  77/5) ( 7 7 / 5 ,  77/71 

Extrapolated 0.015 00 (2 )  0.013 888 ( 7 )  0.010 204 ( 1 )  0.41666 ( 7 )  0.037 500 ( 1 )  0.019 132 (7)  
0.010 20408 0.0416 0.0375 0.019 132 65 Exact 0.015 0.0138 

n = 1, s = 1 n = 2 , S = I  

( x  41 ( 7 7 / 5 ,  n / 8 )  (7715, 77/61 (77/6,77/5) (77/6, 77/81 (77/6, 77/61 (77/5. 7 7 / 5 )  

Extrapolated 0.281 50 (8)  0.286 57 ( 1  1 0.306 66 ( 5 )  0.6725 (2)  0.6770 (8)  0.6166 (4)  
Exact 0.281 5104 0.2865741 0.306 0.672 525 0.677 083 0.616 
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The dimension and the spin of the composite field are given by 

and 

(4.6d) 

(4.6e) 

respectively. In fact we can interpret (4.5) as d:$'" or d ~ j $ ~ , ~ , ~ ~  depending on whether 
n is even or odd, respectively. 

Let us now analyse some excited states. In table 2 we show for ( y = ~ / 5 ,  + = ~ / 5 )  
and ( y = ~ / 5 ,  + = ~ / 4 )  some of our numerical estimates obtained from the extrapola- 
tions ( L  + CO) of the finite-size sequences corresponding to excited states. These results 
correspond to the dimensions d'$:(G', d#T-' and d;$/,:' associated with the root 
distributions of figures 2( c), 2(e) and 2(g),  respectively. The anomalous dimensions 
associated with figure 2(b) are dt;$/"+2 which correspond, in the periodic case, to 
the marginal operator responsible for the continuous changing of the exponents along 
the critical line. From these results, together with the results of the G#J = O  chain [8] 
we conjecture, for the spin-1 chain in an L-even lattice with boundary angle 4, the 
following operator content 

where (A!+", are the irreducible representations of a U(1) Kac-Moody algebra 
with topological charge k = 1 and weights given by ( 4 . 6 ~ ) .  Z2( r, j )  is the operator 
content of the sector j = 0 or 1 (parity even or odd) of the Ising model with toroidal 
boundary condition r = 0 or 1 (periodic or antiperiodic), which is given by 

(4.7b) ZJO, 0) = (O,O)V+ ( I D ,  1/2)" 

&(O, 1 ) = 2 ~ ( 1 , 0 ) = ( 1 / 1 6 , 1 / 1 6 ) v  (4.7c) 

and 

where (A, ,  A I ) ,  are the irreducible representations of the c = f Virasoro algebra (Ising). 
The result (4.7), together with the results of the periodic case [8] induce us to 

conjecture the following operator content for the general spin-S chain with boundary 

Table 2. Extrapolated values for the mass gap amplitudes corresponding to some excited 
states of the spin-1 X X Z  chain. These estimates are obtained by using lattice sizes up to 
L = 40, and the conjectured values are given by (4.6). 

= T / 5 ,  d = H / S  y =  TIS, C$ = 7r/4 

d 2 . @ / 7 7  
d A:?/:-' 1 / 2 . 1 / 2  

d 2 . 6 / 7 7  do.m/n d ;?/?-' 1 / 2 . 1 / 2  1 / 2 . 1 / 2  
d o , d / *  

1 / 2 . 1 / 2  

Extrapolated 1.0166 ( 5 )  0.9166 (4) 1.616 (4)  1.026(1) 0.8843(5) 1.626(1) 
Exact 1.016 0.9 16 1.616 1.026 041 0.884375 1.626 041 
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angle 4 in a chain with L even 

2 s - I  2.5-1 

lZ(y9 +)= 1 z 2 S ( r , j )  ( A L s ) ( 4 ) , A L s ) ( ( $ ) K M  (4 .8a)  
r = O  j = O  n = 2 S Z + r  

m = 2 S Z + j  

where as before (A\’), 
algebra, with 

are the irreducible representations of U( l )  Kac-Moody 

and Z 2 ,  ( r , j )  is the operator content of the sector j = 0,1, . . . , 2 S  - 1 of the quantum 
Z ( 2 S )  Fateev-Zamolodchikov Hamiltonian [ 9 ]  with toroidal boundary condition r = 0, 
1, . . . , 2 S  - 1. See, for example, [ 191 for an explanation of these boundary conditions. 
In the case where the lattice size L is an odd number our conjecture, for the operator 
content, is 

2s-12.5-1 
l:fy, + )=  z2S(r,j) (A?), A “ ’ ) K M .  (4 .9)  

r = O  j = O  n = Z S Z + r + S  
m = 2 S Z + j + S  

To conclude this section it is interesting to observe, in comparison with the periodic 
case, that rhe toroidal boundary condition, specified by the angle 4, only changes the 
dimensions of the U( 1) Gaussian field by adding an extra vorticity of 4S/ v. 

5. The scaling dimensions of extended algebras 

As discussed in [ 10,111, in the case of the spin-S = f X X Z  chain ( c  = l),  the effect of 
the boundary condition ( 2 . 3 )  corresponds, in the continuum model, to the introduction 
of external charges at infinity [l]. From this fact the whole operator content of the 
minimal models (1.1) and (1.2) ( c  < 1) can be obtained from the S = 4 X X Z  chain by 
choosing properly the constant of anisotropy y and the boundry angle ($ [ l l ] .  

As we already know, from the results of the periodic case, the conformal anomaly 
for the spin-S X X Z  chain is c = 3 S /  1 + S, for 0 d y S .rr/2S, and we will see now that, 
in the same way as in the S = f case, we can also relate this model, with the boundary 
condition ( 2 . 3 ) ,  to models having c < 3 S / (  1 + S ) .  Suppose now that, for a given lattice 
size L, part of the eigenspectrum (including the ground-state energy) of the spin-S 
X X Z  chain, with boundary conditions specified the angle 4, is equal up to order 
o( L-I) ,  to the eigenspectrum of a different model with periodic boundary condition. 
This is exactly the case of the spin-S = 4. In  this case the operator content derived in 
the last section, together with the relations (1.8) and (1.9), wouid give us the conformal 
anomaly and scaling dimensions of the operators of this different model. 

From the results (4.3) and (4.4) of the last section and the fact that the conformal 
anomaly of the s p i n 4  X X Z  chain is c = 3 S / (  1 + S )  we obtain, from (1.8), that the 
ground-state energy Eho’ ( y ,  L, 4)  of the spin-S X X Z  chain, with boundary angle 4, 
behaves as (0 s y s r /ZS)  

(5.1) 
Er’(?, L, 4)  

L 
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where, as before, e,( y, L )  is the ground-state energy per particle in the infinite-size 
limit and 5 is the sound velocity given by (4.2). From (1.8) and the above considerations 
Ebo'(y, A, 4 )  is related to a periodic critical quantum chain with conformal anomaly 

x (  ( 1 + s ) 4 2  T - 2Sy) 1, C ( Y , 4 ) = , { 1 -  3s 
(5.2) 

If we now choose 

(5 .3)  
7T 4 = 2 y, m = 3,4,  . . . 

Y = x  

with k = 2S, we obtain 

m = 3,4,  . . . . 7 { 1 -  3k 
2 + k  m(m+k)  (5.4) 

which is the conformal anomaly of the general conformal series (1.6). 
The conformal dimensions (1.7) can also be obtained from the operator content 

of the spin-S X X Z  chain. For example, we will show that the mass gap amplitudes 
of the sector with n = 0 will give us the scalar operators = ip,q) of the extended 
theories (1.6). From (4.8) the operator content for this section, with boundary condition 
4, is given by 

2 s -  I 

G'n=o'(Y, 4)  = c c Z*s(r,  0 ) @ 3 4 ) ,  A ! 3 4 ) ) K M  
r = O  n t = Z S Z + r  

where 

( m  + 4 S / T ) *  
A')(4)=8S(1-2Sy/x)  

and ZZs(r, 0) is the operator content of the sector j = 0 (parity zero) 
Fateev-Zamolodchikov Hamiltonian [19] with boundary conditions 
2s- 1.  

From previous analysis we know [19] that the lowest dimensions 
Z2s(r ,  0) correspond to (A:',', A&)) where 

r ( 2 S  - r )  
Ai'=8S(S+l)  r = 0,1,  . . . , 2 S  - 1 

(5.5a) 

( 5 . 5  b )  

of the Z(2S) 
r = O ,  1 ,  . . . ,  

appearing in 

(5 .6 )  

which are the dimensions of the rth-order parameter of the Z(2S) Fateev-Zamolod- 
chikov model [4]. As a consequence ( 5 . 5 )  contains the particular set of dimensions 

h m ( Y ,  4 )  =2(A:','+A:J(4)) (5.7) 
where m =0,  1, 2 , .  . . ; r = m (mod 2S), A$: and A:' are given by (5.5b) and (5.6). 
Let us now define the following difference of dimensions 

where p > q and t = ( p  - q )  mod 2s.  If we now make the choice (5 .3)  for y and 
obtain, with k = 2 s :  

we 

- [p(m+k)-qm]'-k' t ( k - t )  
2km( m + k )  k(k+2) 

A;-q = +- (5.9) 
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which is precisely the dimensions of the scalar operators predicted in (1.7) for the 
general theories (1.6). 

Before we close this paper it is interesting to remark here that in the S = 4 X X Z  
chain it was possible to obtain [ l l ]  not only the scaling dimensions of the operators 
of the minimal models, like in (5.8) and (5 .9 ) ,  but also the characters of the minimal 
conformal algebras. Surprisingly in the spin-S = f quantum chain the numerical results 
for finite chains [ 111 show us that due to an exact cancellation of the levels of different 
sectors and boundaries the partition function of the minimal models, in finite lattice 
chains, are obtained from these of the spin-f X X Z  chain. This exact cancellation of 
levels is related to the fact that the exact integrability of the model does not depend 
on the lattice size [20]. The same type of cancellation also occurs for the general 
spin-S chain. For example we can show that all the solutions { A }  of the BAE (2.4) in 
the sector ( n  + 1) with boundary conditions 9 = 2 yk  ( k  = 0, 1,2, . . .) is also a solution 
of the same equations in the sector n and boundary condition 4 = 2 y ( k +  l ) ,  if we 
add one A at infinity. The corresponding eigenenergies are the same because the zero 
at infinity does not contribute to the energy, as we can see from (2.5). We expect 
therefore that the same types of relations between finite systems obtained in the S = 4 
case can also be derived for the general spin-S chain. A possible way to proceed in 
this investigation is the use of quantum algebras, as in [20]. 
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